当前位置: 首页 > 科技 > 人工智能 > 太阳图、平行坐标…5种动态、交互可视化让数据讲出更动听

太阳图、平行坐标…5种动态、交互可视化让数据讲出更动听

天乐
2020-04-11 08:07:08 第一视角

选自TowardsDataScience

作者:Liana Mehrabyan

机器之心编译

参与:Panda

数据可以帮助我们描述这个世界、阐释自己的想法和展示自己的成果,但如果只有单调乏味的文本和数字,我们却往往能难抓住观众的眼球。而很多时候,一张漂亮的可视化图表就足以胜过千言万语。本文将介绍 5 种基于 Plotly 的可视化方法,你会发现,原来可视化不仅可用直方图和箱形图,还能做得如此动态好看甚至可交互。

对数据科学家来说,讲故事是一个至关重要的技能。为了表达我们的思想并且说服别人,我们需要有效的沟通。而漂漂亮亮的可视化是完成这一任务的绝佳工具。本文将介绍5 种非传统的可视化技术,可让你的数据故事更漂亮和更有效。这里将使用 Python 的 Plotly 图形库(也可通过 R 使用),让你可以毫不费力地生成动画图表和交互式图表。

那么,Plotly 有哪些好处?Plotly 的整合能力很强:可与 Jupyter Notebook 一起使用,可嵌入网站,并且完整集成了 Dash——一种用于构建仪表盘和分析应用的出色工具。

启动

如果你还没安装 Plotly,只需在你的终端运行以下命令即可完成安装:

pip install plotly

安装完成后,就开始使用吧!

动画

在研究这个或那个指标的演变时,我们常涉及到时间数据。Plotly 动画工具仅需一行代码就能让人观看数据随时间的变化情况,如下图所示:

代码如下:

import plotly.express as px

from vega_datasets import data

df = data.disasters()

df = df[df.Year > 1990]

fig = px.bar(df,

y="Entity",

x="Deaths",

animation_frame="Year",

orientation='h',

range_x=[0, df.Deaths.max()],

color="Entity")

# improve aesthetics (size, grids etc.)

fig.update_layout(width=1000,

height=800,

xaxis_showgrid=False,

yaxis_showgrid=False,

paper_bgcolor='rgba(0,0,0,0)',

plot_bgcolor='rgba(0,0,0,0)',

title_text='Evolution of Natural Disasters',

showlegend=False)

fig.update_xaxes(title_text='Number of Deaths')

fig.update_yaxes(title_text='')

fig.show()

只要你有一个时间变量来过滤,那么几乎任何图表都可以做成动画。下面是一个制作散点图动画的例子:

import plotly.express as px

df = px.data.gapminder()

fig = px.scatter(

df,

x="gdpPercap",

y="lifeExp",

animation_frame="year",

size="pop",

color="continent",

hover_name="country",

log_x=True,

size_max=55,

range_x=[100, 100000],

range_y=[25, 90],

# color_continuous_scale=px.colors.sequential.Emrld

)

fig.update_layout(width=1000,

height=800,

xaxis_showgrid=False,

yaxis_showgrid=False,

paper_bgcolor='rgba(0,0,0,0)',

plot_bgcolor='rgba(0,0,0,0)')

太阳图

太阳图(sunburst chart)是一种可视化 group by 语句的好方法。如果你想通过一个或多个类别变量来分解一个给定的量,那就用太阳图吧。

假设我们想根据性别和每天的时间分解平均小费数据,那么相较于表格,这种双重 group by 语句可以通过可视化来更有效地展示。

这个图表是交互式的,让你可以自己点击并探索各个类别。你只需要定义你的所有类别,并声明它们之间的层次结构(见以下代码中的 parents 参数)并分配对应的值即可,这在我们案例中即为 group by 语句的输出。

import plotly.graph_objects as go

import plotly.express as px

import numpy as np

import pandas as pd

df = px.data.tips()

fig = go.Figure(go.Sunburst(

labels=["Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch '],

parents=["", "", "Female", "Female", 'Male', 'Male'],

values=np.append(

df.groupby('sex').tip.mean().values,

df.groupby(['sex', 'time']).tip.mean().values),

marker=dict(colors=px.colors.sequential.Emrld)),

layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',

plot_bgcolor='rgba(0,0,0,0)'))

fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),

title_text='Tipping Habbits Per Gender, Time and Day')

fig.show()

现在我们向这个层次结构再添加一层:

为此,我们再添加另一个涉及三个类别变量的 group by 语句的值。

import plotly.graph_objects as go

import plotly.express as px

import pandas as pd

import numpy as np

df = px.data.tips()

fig = go.Figure(go.Sunburst(labels=[

"Female", "Male", "Dinner", "Lunch", 'Dinner ', 'Lunch ', 'Fri', 'Sat',

'Sun', 'Thu', 'Fri ', 'Thu ', 'Fri ', 'Sat ', 'Sun ', 'Fri ', 'Thu '

],

parents=[

"", "", "Female", "Female", 'Male', 'Male',

'Dinner', 'Dinner', 'Dinner', 'Dinner',

'Lunch', 'Lunch', 'Dinner ', 'Dinner ',

'Dinner ', 'Lunch ', 'Lunch '

],

values=np.append(

np.append(

df.groupby('sex').tip.mean().values,

df.groupby(['sex',

'time']).tip.mean().values,

),

df.groupby(['sex', 'time',

'day']).tip.mean().values),

marker=dict(colors=px.colors.sequential.Emrld)),

layout=go.Layout(paper_bgcolor='rgba(0,0,0,0)',

plot_bgcolor='rgba(0,0,0,0)'))

fig.update_layout(margin=dict(t=0, l=0, r=0, b=0),

title_text='Tipping Habbits Per Gender, Time and Day')

fig.show()

平行类别

另一种探索类别变量之间关系的方法是以下这种流程图。你可以随时拖放、高亮和浏览值,非常适合演示时使用。

代码如下:

import plotly.express as px

from vega_datasets import data

import pandas as pd

df = data.movies()

df = df.dropna()

df['Genre_id'] = df.Major_Genre.factorize()[0]

fig = px.parallel_categories(

df,

dimensions=['MPAA_Rating', 'Creative_Type', 'Major_Genre'],

color="Genre_id",

color_continuous_scale=px.colors.sequential.Emrld,

)

fig.show()

平行坐标图

平行坐标图是上面的图表的连续版本。这里,每一根弦都代表单个观察。这是一种可用于识别离群值(远离其它数据的单条线)、聚类、趋势和冗余变量(比如如果两个变量在每个观察上的值都相近,那么它们将位于同一水平线上,表示存在冗余)的好用工具。

代码如下:

import plotly.express as px

from vega_datasets import data

import pandas as pd

df = data.movies()

df = df.dropna()

df['Genre_id'] = df.Major_Genre.factorize()[0]

fig = px.parallel_coordinates(

df,

dimensions=[

'IMDB_Rating', 'IMDB_Votes', 'Production_Budget', 'Running_Time_min',

'US_Gross', 'Worldwide_Gross', 'US_DVD_Sales'

],

color='IMDB_Rating',

color_continuous_scale=px.colors.sequential.Emrld)

fig.show()

量表图和指示器

量表图仅仅是为了好看。在报告 KPI 等成功指标并展示其与你的目标的距离时,可以使用这种图表。

指示器在业务和咨询中非常有用。它们可以通过文字记号来补充视觉效果,吸引观众的注意力并展现你的增长指标。

import plotly.graph_objects as go

fig = go.Figure(go.Indicator(

domain = {'x': [0, 1], 'y': [0, 1]},

value = 4.3,

mode = "gauge+number+delta",

title = {'text': "Success Metric"},

delta = {'reference': 3.9},

gauge = {'bar': {'color': "lightgreen"},

'axis': {'range': [None, 5]},

'steps' : [

{'range': [0, 2.5], 'color': "lightgray"},

{'range': [2.5, 4], 'color': "gray"}],

}))

fig.show()

原文链接:https://towardsdatascience.com/5-visualisations-to-level-up-your-data-story-e131759c2f41

本文为机器之心编译,转载请联系本公众号获得授权。

------------------------------------------------

加入机器之心(全职记者 / 实习生):hr@jiqizhixin.com

投稿或寻求报道:content@jiqizhixin.com

广告 & 商务合作:bd@jiqizhixin.com

提示:支持键盘“← →”键翻页
为你推荐
加载更多
意见反馈
返回顶部